

TERMOSTATO DIFFRENCIAL PARA AQUECIMENTO SOLAR

Ver. 01

1. DESCRIÇÃO

O Microsol BMP Advanced é um termostato diferencial para aquecimento solar com três sensores e duas saídas, que atuam no controle da bomba de circulação de água e no apoio térmico. Dispõe de relógio e agenda de eventos para uso racional e econômico do apoio térmico, além da exclusiva função Férias* que agrega proteção e economia de energia ao SAS em períodos de baixo consumo de água quente.

O controlador possui funções que evitam o superaquecimento e o congelamento da água no coletor solar. Dispõe de proteção ao acesso dos parâmetros de configuração.

A linha Microsol Advanced se caracteriza pelo design diferenciado para uso em ambientes residenciais, pela facilidade de operação com teclas de acesso facilitado aos principais recursos do controlador e pela utilização do display customizado. A tecnologia de display empregada permite apresentar de forma simples e completa as informações do sistema de aquecimento solar, tais como: estado das saídas, modo de operação da bomba, posição e temperatura dos sensores.

*patente requerida

2. APLICAÇÃO

- Aquecimento solar com sistema auxiliar de aquecimento

3. ESPECIFICAÇÕES TÉCNICAS

- -Alimentação: Microsol *BMP Advanced*: 230Vac ±10%(50/60Hz) ou na versão 115Vac ±10%(50/60Hz)
- Temperatura de operação: 0 a 40°C
- Umidade de operação: 10 a 90% UR (sem condensação)
- -Sensores: O Microsol BMP Advanced possui 3 sensores:

Sensor T1: Coletor Solar – Sensor SB59, ponta metálica, Silicone, 1m Sensor T2: Reservatório térmico – Sensor SB41, ponta plástica, 2m

Sensor T3: Apoio – Sensor SB41, ponta plástica, 2m - Temperatura de controle: Sensor T1: -50 a 200°C / -58 a 392°F

Sensor T2: -50 a 105°C / -58 a 221°F

Sensor T3: -50 a 105°C / -58 a 221°F

- Resolução: 0,1°C entre -10 e 100°C e 1°C no restante da faixa
 - 1°F em toda a faixa
- -Saída de controle: O Microsol BMP Advanced possui duas saídas de relé: PUMP - Saída de relé, máx. 1HP em 220Vca (1/2 HP em 127 Vca)

AUX - Saída de relé, máx, 16A, resistência

de 3500W em 220Vca (1750W em 127 Vca)

- Dimensões: 104 x 148 x 32 mm

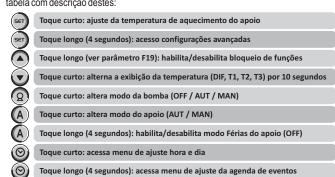
- Display: LCD 2.75" com backlight

Obs: a soma das cargas não deve ultrapassar 24A

4. INDICAÇÕES E TELA 4.1 APRESENTAÇÃO

1	Tecla modo da Bomba
2	Tecla modo do Apoio
3	Tecla Relógio
4	Tecla Diminui
5	Tecla Set
6	Tecla Aumenta
7	Indicação do modo de operação da bomba
8	Indicação do modo de operação do apoio
9	Sinalizações do controlador
10	Representação do sistema de aquecimento solar
11	Dígitos do display inferior
12	Dígitos do display superior

4.2 INDICAÇÕES


SET	Em programação, ajuste de parâmetro liberado				
LOC	Em programação, ajuste de parâmetro bloqueado				
F	Indicação da temperatura na escala Fahrenheit				
T	Indicação da temperatura na escala Celsius				
*	Bomba ligada devido à função de resfriamento				
****	Bomba ligada devido à função de anticongelamento				
	Bomba ligada devido à função do tubo a vácuo				
mm	Bomba ligada devido ao diferencial de temperatura (T1-T2)				
<u>-:©:</u>	Saída da bomba ligada				

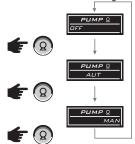
Saída do apoio ligada - MANA + - ANG Saída do apoio ligada devido à função F15 Posição do sensor T1 - coletor solar ы ₽₽ Posição do sensor T2 - reservatório térmico ĿЭ Posição do sensor T3 - apoio F E+=MAX Indica a ocorrência do sobreaquecimento T1 -E 2=+= MAX= Indica a ocorrência do sobreaquecimento T2 注:(+)选 Indica a ocorrência de erro no sensor T1 }t2(+<u>)</u>X Indica a ocorrência de erro no sensor T2 注: +: | | | Indica a ocorrência de erro no sensor T3 A Bloqueio de funções habilitado Antes do meio-dia (relógio padrão 12h) AM Após meio-dia (relógio padrão 12h)

5. OPERAÇÕES PARA USUÁRIO DOMÉSTICO

5.1 MAPA DE TECLAS

O controlador dispõe de acessos facilitados aos recursos pertinentes ao usuário. Segue tabela com descrição destes:

5.2 TEMPERATURA DE AQUECIMENTO DO APOIO (SENSOR T3)



Define a temperatura de operação do apoio (T3). Para ajustar este parâmetro dê um toque curto na tecla SET. Utilize as teclas ▼ ou ▲ para ajustar o valor. Para confirmar dê um toque curto na tecla **SET** e o valor será salvo na memória do controlador. Este parâmetro pode ser

ajustado entre os valores definidos na configuração avançada para os parâmetros: F | | - Valor mínimo para a temperatura do apoio e F | | - | Valor máximo para temperatura de apoio.

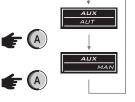
5.3 MODO DE FUNCIONAMENTO DA BOMBA D'ÁGUA

A cada toque curto na tecla **Q** é alterado o modo de funcionamento da bomba d'água. A bomba de circulação de água entre o coletor solar e o reservatório térmico pode operar em três modos distintos. Segue descrição:

OFF = Bomba de circulação sempre desligada

AUT = Bomba de circulação em modo automático operando conforme configuração dos parâmetros

MAN = Bomba de circulação ligada


Atenção: Neste modo a bomba é mantida ligada, ignorando as funções de proteção e os sensores de temperatura

Obs.: No ajuste do modo da bomba, o controlador assume o novo modo 5 segundos após a sua seleção. Este também é o tempo necessário para o parâmetro ser armazenado em

Quando selecionado o modo MAN (MANUAL), o modo de funcionamento da bomba permanece neste estado pelo período de 6 horas (tempo fixo). Após, o controlador assume o modo AUT (AUTOMÁTICO). Se desejar voltar para o modo AUT antes de 6 horas, pressione a tecla $\mathbf Q$ a qualquer momento.

5.4 MODO DE FUNCIONAMENTO DO APOIO

A cada toque curto na tecla A é possível alterar o modo de funcionamento da saída de apoio, entre os modos MAN e AUT.

AUT = Apoio em modo automático, operando conforme configuração da agenda de eventos e temperatura do sensor T3 (parâmetro EERP).

MAN = Apoio em modo manual, permanece neste modo pelo tempo definido em F13 - Tempo de acionamento manual do apoio, após retorna ao modo AUT.

Obs.: No ajuste do modo do apoio, o controlador assume o novo modo 5 segundos após a sua seleção. Este também é o tempo necessário para o parâmetro ser armazenado em sua memória

O modo manual é utilizado quando se deseja aquecer eventualmente o reservatório térmico fora dos horários previstos na agenda de eventos.

Em modo manual, a saída do apoio continua associada à temperatura do sensor T3 através da Temperatura de aquecimento do Apoio (parâmetro [E []]). Neste modo, o controlador permite que a saída de apoio seja ligada durante o período programado no parâmetro [F]].

5.4.1 MODO FÉRIAS

Para habilitar/desabilitar o modo Férias deve-se manter pressionada a tecla **A** por 4 segundos.

OFF: modo férias habilitado.

4 segundos

Quando habilitado:

- * A agenda de eventos é ignorada, a saída de apoio é desligada, resultando em redução do consumo de energia.
- * Efetua o resfriamento do reservatório conforme programado em FOB Temperatura mínima no sensor T3 para ativar resfriamento no modo Férias.

A função Férias é utilizada para desligar o apoio e permitir que o reservatório seja resfriado através do coletor solar, quando a sua temperatura for inferior ao reservatório, como por exemplo: durante a noite. Em períodos com baixo ou nenhum consumo de água quente e alta intensidade solar, por exemplo, férias, feriadões ou temporada fora da residência, o reservatório atingirá o seu limite máximo de temperatura e o sistema de aquecimento solar estará sujeito a alta carga térmica.

Obs.: No ajuste do modo do Apoio, o controlador assume o novo modo 5 segundos após a sua seleção. Este também é o tempo necessário para o parâmetro ser armazenado em sua memória.

5.5 AJUSTE HORA E DIA

Para acessar o menu da Hora e Dia basta dar um toque curto na tecla ② . Através das teclas ▲ ou ▼ é possível navegar entre os parâmetros. Para editá-los pressione a tecla S€T e através das teclas ▲ ou ▼ atualize o seu valor. Pressionando novamente a tecla S€T retorna-se ao menu de parâmetros.

Relógio - Ajuste da hora.

Dia - Ajuste do dia da semana. Ajustável de 1 (Domingo) a 7 (Sábado).

IMPORTANTE:

O controlador dispõe de bateria recarregável para o controle do relógio, quando da falta de energia elétrica por até algumas semanas. Caso o controlador fique desligado por um longo período, poderá ser exibida a mensagem [£ [[]], indicando que o relógio está desprogramado em função da baixa carga da bateria. Nesta situação basta ajustar hora e dia do controlador. Caso isso aconteça, é necessário que o controlador permaneça energizado por 10 horas para que a bateria seja totalmente recarregada.

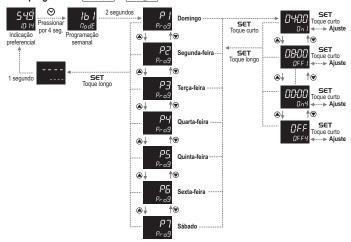
Obs.: No menu de parâmetros, para sair e retornar a operação normal (indicação preferencial da temperatura e hora) mantenha a tecla S€T pressionada (toque longo) até aparecer a mensagem [----].

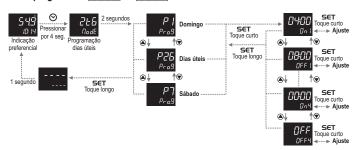
Quando selecionada a escala de temperatura Fahrenheit, o relógio assume o padrão 12h, e são utilizados os ícones AM e PM para indicação da hora. Nesta escala as mensagens Hora e Dia da descrição do parâmetro são substituídas por Hour e Day no display do controlador.

5.6 AJUSTE AGENDA DE EVENTOS

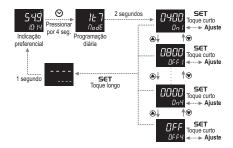
Para configurar a agenda de eventos, associada à saída de apoio, deve-se pressionar a tecla \bigodot por 4 segundos.

A agenda de eventos permite configurar até 4 eventos para cada dia da semana, conforme a programação efetuada no parâmetro <u>F [1]</u> - Modo de operação da agenda de eventos do apoio. Cada evento é composto por um horário inicial e final.


A agenda de eventos sai configurada de fábrica no modo [1], eventos iguais para todos os dias da semana, e os horários definidos como segue:


Caso não seja necessário utilizar os 4 eventos, deve-se configurar estes no estado desligado, bastando aumentar o horário final, até aparecer \(\overline{DFF} \).

De acordo com o modo de operação configurado podem ser apresentadas as seguintes possibilidades de programação:


Caso programado \overline{F} $\overline{\overline{I}}$ $\overline{\overline{I}}$ $\overline{\overline{I}}$

Caso programado $\boxed{F14} = \boxed{2 + 5}$

Caso programado $\boxed{F14} = \boxed{157}$

5.7 VISUALIZAR OUTRAS TEMPERATURAS

Para alternar entre a visualização da temperatura do sensor T1, sensor T2, sensor T3 ou o diferencial (T1-T2) dê toques curtos na tecla ▼ até que seja exibida no display a temperatura desejada. Nos dígitos do display superior é apresentada a temperatura medida e nos dígitos do display inferior a descrição do sensor.

A temperatura selecionada será exibida durante 10 segundos. Após, a indicação preferencial volta a ser exibida, conforme ajustado no parâmetro Fig. - Indicação Preferencial.

5.8 BLOQUEIO DE FUNÇÕES

Por motivos de segurança e de modo a evitar que pessoas não autorizadas alterem as configurações do controlador, existe o recurso de bloqueio de funções. Com essa configuração ativada, os parâmetros não podem ser alterados, entretanto, podem ser visualizados. Na condição de bloqueio, ao tentar alterar o valor de um parâmetro será exibida a mensagem tarrow tarrow

Para habilitar/desabilitar o bloqueio de funções deve-se manter pressionada

a tecla riangle pelo tempo configurado no parâmetro $\overline{\textit{F19}}$ – Tempo para bloqueio de funções. O ícone riangle indica ao usuário o estado do bloqueio, caso acesso, indica que o bloqueio de funções está ativo.

DICA: com o bloqueio de funções ativo evita-se que crianças, visitantes ou curiosos alterem o modo de funcionamento ou parâmetros do controlador. Quando há necessidade de alguma alteração, basta manter pressionada a tecla ▲ para habilitar/desabilitar este recurso.

6. OPERAÇÕES AVANÇADAS PARA O INSTALADOR (USO TÉCNICO) 6.1 ALTERAÇÃO DOS PARÂMETROS DO CONTROLADOR

Acesse o menu de configurações pressionando a tecla S€T por 4 segundos até aparecer [Func]. Em seguida aparecerá [[ode] e então pressione novamente a tecla S€T, toque curto. Utilize as teclas ▲ ou ▼ para entrar com o valor do código de acesso, 123, e quando pronto pressione novamente a tecla S€T (toque curto).

Utilize as teclas ▲ ou▼ para selecionar a função desejada. Com um toque curto na tecla S€T é possível editar o seu valor. Utilize as teclas ▲ ou ▼ para alterar o valor, e quando pronto dê um toque curto na tecla S€T para memorizar o valor configurado e retornar ao menu de funções.

Para sair do menu e retornar a operação normal (indicação da temperatura) pressione a tecla **SET** (toque longo) até aparecer [----].

Observações:

Ao acessar o ajuste de um parâmetro, o display superior ficará piscante e sobre este é exibido o ícone SET, indicando que é possível alterar o valor do parâmetro.

- Caso não tenha sido inserido o código 123, ao acessar o ajuste do parâmetro está travado.

- Com o bloqueio de funções ativo, ao pressionar as teclas ▲ou ▼ para alterar o valor da função, o controlador exibirá a mensagem L 🛛 🖺 🗍 no display e não será possível efetuar o ajuste do parâmetro.

6.2 TABELA DE PARÂMETROS

		CELSIUS			FAHRENHEIT				
Fun	Descrição	Mín	Máx	Unid	Padrão	Mín	Máx	Unid	Padrão
[odE]	Código de acesso	0	999	-	0	0	999	-	0
FOI	Indicação preferencial	DIF	T3	-	T3	DIF	T3	-	T3
F 0 2	Diferencial (T1-T2) para ligar a bomba	1.0	40.0	°C	8.0	1	72	°F	14
F 0 3	Diferencial (T1-T2) para desligar a bomba	1.0	40.0	°C	4.0	1	72	°F	7
F [] Y	Temperatura de anticongelamento (T1) para ligar a bomba	no (-19)	10.0	°C	8.0	no (-2)	50	°F	46
F 05	Tempo mínimo de anticongelamento	no (0)	600	S	60	no (0)	600	S	60
F 0 6	Temperatura de superaquecimento (T1) para desligar a bomba	0.0	200	°C	90.0	32	392	°F	194
F07	Temperatura de superaquecimento (T2) para desligar a bomba	0.0	105	°C	70.0	32	221	°F	158
F 0 8	Temperatura no sensor T3 para desligar o resfriamento no modo férias	0.0	105	°C	50.0	32	221	°F	122
F [] 9	Função tubo a Vácuo	Off	On	-	Off	Off	On	-	Off
F 10	Histerese da temperatura de apoio (T3) (parâmetro TEMP)	0.1	20.0	°C	1.0	1	36	°F	1
FII	Valor mínimo permitido para configurar a temperatura do apoio (parâmetro TEMP)	0.0	105	°C	0.0	32	221	°F	32
F 12	Valor máximo permitido para configurar a temperatura do apoio (parâmetro TEMP)	0.0	105	°C	50.0	32	221	°F	122
F 13	Tempo de acionamento manual do apoio	no (0)	600	min	120	no (0)	600	min	120
F 14	Modo de operação da agenda de eventos do apoio	1b1	1t7	-	1t7	1b1	1t7	-	1t7
F 15	Saída do apoio associado ao anticongelamento T1	Off	On	-	Off	Off	On	-	Off
F 16	Deslocamento da indicação do sensor T1 (Offset)	-5.0	5.0	°C	0.0	-9	9	°F	0
F 17	Deslocamento da indicação do sensor T2 (Offset)	-5.0	5.0	°C	0.0	-9	9	°F	0
F 18	Deslocamento da indicação do sensor T3 (Offset)	-5.0	5.0	°C	0.0	-9	9	°F	0
F 19	Tempo para bloqueio de funções	no (3)	30	S	4	no (3)	30	S	4
F20	Intensidade da luz de fundo display (Backlight)	1	10	-	8	1	10	_	8

6.3 DESCRIÇÃO DOS PARÂMETROS

[o d E - Código de acesso (123):

É necessário quando se deseja alterar os parâmetros de configuração avançada. Para somente visualizar os parâmetros ajustados não é necessária a inserção deste código

F 🛛 🛘 - Indicação preferencial:

Esta função permite escolher a temperatura que será normalmente exibida no display. Pode-se escolher entre:

Diferencial T1-T2. Mostra quantos graus é a diferença entre o coletor solar dif (T1) e a piscina ou reservatório térmico (T2).

Temperatura dos coletores (T1). E 3 - Temperatura do reservatóri E 3 - Temperatura do apoio (T3). - Temperatura do reservatório térmico (T2).

F 🛛 🗗 - Diferencial (T1-T2) para ligar a bomba:

Permite configurar a diferença de temperatura entre o coletor solar e o reservatório térmico para acionar a bomba de circulação. A medida que os coletores recebem energia, a temperatura no sensor T1 aumenta, quando esta temperatura estiver a um determinado valor acima da temperatura do sensor T2, a bomba é ligada e circula a água aguecida, armazenando-a no reservatório.

F [] 3 - Diferencial (T1-T2) para desligar a bomba:

Permite configurar a diferença de temperatura entre o coletor solar e o reservatório térmico para desligar a bomba de circulação. Com a bomba ligada, a diferença de temperatura entre o coletor e o reservatório (T1-T2) tende a diminuir. Quando este valor cai a um determinado valor, a bomba é desligada, parando a circulação da água.

<u>F ∄ प</u>] - **Temperatura de anticongelamento (T1) para ligar a bomba:** Quando a temperatura dos coletores (T1) estiver muito baixa (ex∴ noites de inverno) a bomba é ligada, em função da temperatura ajustada neste parâmetro, para impedir que a água congele no coletor solar e danifique o mesmo. A histerese deste controle é fixa e definida em 2.0°C. Para desabilitar esta função desloque o ajuste para o mínimo até que seja exibido 🔝 🙃

F [] 5] - Tempo mínimo de anticongelamento:

Este tempo mínimo de bomba ligada, serve como segurança, para garantir que a água passe por todos os coletores. Mesmo que a temperatura do sensor T1 supere a temperatura de anticongelamento (parâmetro F $\overline{\underline{UY}}$), o controlador respeita o tempo programado neste parâmetro. Função muito utilizada em grandes obras pela quantidade de placas instaladas. Para desabilitar esta função desloque o ajuste para o mínimo até que seja exibido

F [] 6 - Temperatura de superaquecimento (T1) para desligar a bomba:

Quando a temperatura nos coletores (T1) estiver acima do valor ajustado neste parâmetro, a bomba é desligada de modo a impedir que a água superaquecida circule pelos canos e os danifique, caso sejam utilizados canos de PVC, por exemplo. A histerese deste controle é fixa e definida em 2,0°C.

F [] 7 - Temperatura de superaquecimento (T2) para desligar a bomba:

Esta é a temperatura máxima desejada no reservatório, acima da qual a bomba de circulação d'agua não irá operar. Essa é uma medida de segurança para proteger a instalação hidráulica em caso de superaquecimento. A histerese deste controle é fixa e definida em 2.0°C.

F [] B - Temperatura no sensor T3 para desligar o resfriamento no modo férias:

Tem por finalidade resfriar o reservatório térmico durante a noite, quando ativado o modo Férias, sempre que a temperatura do sensor T3 for superior ao valor ajustado neste parâmetro e a diferença de temperatura entre o coletor (T1) e o reservatório (T2) atingir -4,0°C (fixo). A bomba então é ligada, utilizando o coletor como radiador para resfriar a água da piscina. Quando o diferencial (T1-T2) baixar de -2,0°C (fixo) ou a temperatura do apoio (T3) baixar da temperatura deste parâmetro a bomba é desligada. A histerese deste controle é fixa e definida

F N 9	- Função tubo	a vácuo

Caso habilitada esta função, aciona a bomba por 20 segundos (fixo) a cada 30 minutos (fixo) que a bomba ficar desligada, enquanto a temperatura do coletor (T1) estiver acima de 20.0°C (fixo) e o diferencial de temperatura (T1-T2) for positivo.

Há modelos de coletores a tubo a vácuo que não permitem a medida direta de temperatura do coletor, pois não dispõem de previsão para sensores de imersão. Para uma correta medida da temperatura da água na saída do coletor é necessário que ocorra um mínimo de fluxo de água. Para isso o circuito solar deve ativar a bomba, em intervalos regulares de modo que a água aquecida do coletor chegue ao sensor T1.

Obs.: o controlador prioriza as configurações de proteção (sobreaquecimento), ignorando a função de tubo a vácuo, quando da ocorrência destas.

F ID - Histerese da temperatura do apoio (T3) (parâmetro E F RP):

Diferença de temperatura para ligar o apoio. Através desta função pode-se definir um intervalo

de temperatura dentro do qual a saída de apoio permanecerá desligada. Por exemplo: Caso ajustado $\underbrace{\texttt{L} \ \ \texttt{E} \ \ \texttt{IP}}_{\text{L} \ \ \text{L}} = \underbrace{\texttt{L} \ \ \texttt{L}}_{\text{L}}_{\text{L}} = \underbrace{\texttt{L}}_{\text{L}}$ mesma cair abaixo de 44,0°C (45,0-1,0=44,0).

F | | | | - Valor mínimo permitido para configurar a temperatura do apoio: F | | | | - Valor máximo permitido para configurar a temperatura do apoio:

Estes parâmetros servem como limites inferior e superior de ajuste do parâmetro EERP (Temperatura de aquecimento do Apoio). São utilizadas para fazer um bloqueio do ajuste da temperatura, de modo a restringir uma configuração inadequada, por exemplo, um valor elevado poderá manter a saída do apoio ligada por um longo tempo, acarretando em um elevado consumo de energia.

F 13 - Tempo de acionamento manual do apoio:

Utilizado quando o usuário deseja acionar eventualmente a saída de apoio fora dos horários

F 14 - Modo de operação da agenda de eventos do apoio:

Define o modo de operação da agenda de eventos:

16 / - Programação Semanal - neste modo o instrumento pode configurar até 4 eventos diferentes para cada dia da semana.

2 6 - Programação para dias úteis - neste modo o instrumento mantém os eventos iguais nos dias úteis (Segunda a Sexta) e permite programar eventos diferentes para o Sábado e o Domingo.

[1] - Programação diária - neste modo o instrumento mantém os eventos iguais

para todos os dias da semana.

Obs: Ao alterar o modo da agenda de eventos o controlador carrega os eventos com os valores de fábrica.

F 15	- Saída do a	poio associado ao	anticongelamento T1:

Quando habilitado, tem por objetivo garantir uma temperatura mínima no reservatório térmico, para quando for necessário executar a função de anticongelamento (F [] 4]). A saída do apoio é acionada sempre que a temperatura do apoio (T3) for inferior ao ajuste de F 🗓 4 (temperatura anticongelamento) + 20,0°C (fixo). A histerese deste controle é fixa e definida em

Por exemplo, caso ajustado F [] 4] = [] [], a saída do apoio irá ligar quando a temperatura (T3) for inferior a 28,0°C e desligará quando for superior a 30,0°C.

Obs: Esta função liga a saída de apoio independente do modo do apoio ou da agenda de eventos.

F 16 -	Deslocamento da indicação do sensor T1	Offset
F 17] -	Deslocamento da indicação do sensor T2	Offset
F 18 -	Deslocamento da indicação do sensor T3	Offset

Permite compensar eventuais desvios na leitura dos sensores T1 (coletor), T2 (reservatório) ou T3 (apoio), provenientes da troca do sensor ou da alteração do comprimento do cabo.

F 19 - Tempo para bloqueio de funções:

Define o tempo que deve ser mantida pressionada a tecla ▲ para bloquear/desbloquear as alterações dos parâmetros. Para mais esclarecimentos ver item 5.8 - Bloqueio de Funções.

F 2 0 - Intensidade da luz de fundo do display (Backlight):

Define a intensidade da luz de fundo do display de modo a definir o seu contraste.

6.4 SELEÇÃO DE UNIDADE

Para definir a unidade de temperatura que o instrumento irá operar deve-se acessar a função [ver item 6.1 para saber como acessar essa função), inserir o código 231 e pressionar a tecla SET. O usuário pode selecionar a unidade pressionando as teclas ▲ ou ▼, onde são alternadas as mensagens ou oF. Pressione a tecla SET para confirmar a unidade desejada. Em seguida será exibido a mensagem e o ícone correspondente a unidade Tou F será ligado.

Obs.: Ao ser trocada a unidade, o controlador carrega os valores de fábrica em seus parâmetros, FRC, sendo necessário realizar a configuração dos mesmos.

NEF

- Providências: Entrar em contato com o técnico responsável nela instalação.

Providências: Ajustar valor do parâmetro F13 - Tempo de

acionamento manual do apoio.

- Providências: Entrar em contato com o técnico responsável pela instalação.

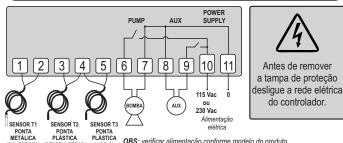
Obs.: Na ocorrência de alguma informação de erro o controlador sinaliza ao usuário, piscando brevemente o backlight do display, de forma a chamar atenção.

8. INSTALAÇÃO 8.1 CONEXÕES ELÉTRICAS

A instalação do produto deve ser feita por um profissional técnico capacitado.

Antes de remover

do controlador.


SIM) O controlador <u>DEVE</u> ser instalado:

- em um ambiente interno e seco:
- afastado de campos eletromagnéticos; em um local arejado, livre de líquidos e gases
- protegido por disjuntor de especificação

O controlador NÃO DEVE ser instalado:

- em ambiente úmido;
- exposto ao sol ou a chuva;
- em saunas, casa de máquinas ou banheiros

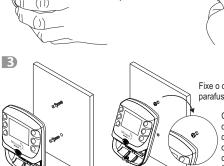
O não cumprimento dos alertas irá causar perda da garantia, danos materiais e/ou físicos.

OBS: verificar alimentação conforme modelo do produto.

Nota: O comprimento do cabo do sensor pode ser aumentado pelo próprio usuário em até 200 metros utilizando cabo PP 2 x 24 AWG

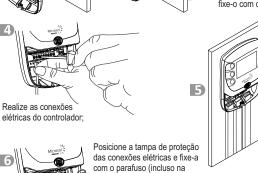
O sensor com ponta metálica deve ser instalado no coletor solar, pois suporta a temperatura de 200°C.

8.2. IMPORTANTE


Conforme capítulos da norma NBR 5410:

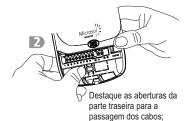
- 1: Instale protetores contra sobretensões na alimentação
- 2: Cabos de sensores e de comunicação serial podem estar juntos, porém não no mesmo eletroduto por onde passam alimentação elétrica e acionamento de cargas
- 3: Instale supressores de transientes (filtro RC) em paralelo às cargas, como forma de aumentar a vida útil dos relés.

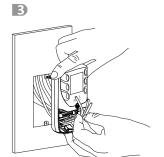
A Full Gauge Controls disponibiliza supressores para venda



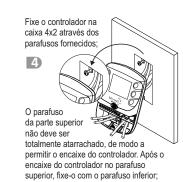
proteção das conexões na parte inferior do controlador:

Fixe o controlador na parede através dos parafusos e buchas fornecidos; O parafuso da parte superior não deve ser totalmente atarrachado, de modo a permitir o encaixe do controlador. Após o encaixe do controlador no parafuso superior, fixe-o com o parafuso inferior;


embalagem)


Para um melhor acabamento instale canaletas tipo sistema X para passar os cabos:

8.4 INSTALAÇÃO CAIXA 4x2



Passe os cabos pelas aberturas conforme conexões do controlador;

INFORMAÇÕES AMBIENTAIS

Embalagem:

Os materiais utilizados nas embalagens dos produtos Full Gauge são 100% recicláveis. Procure fazer o descarte através de agentes recicladores especializados.

Os componentes utilizados nos controladores Full Gauge podem ser reciclados e reaproveitados se forem desmontados por empresas especializadas.

Não queime nem jogue em lixo doméstico os controladores que atingirem o fim de sua vida útil. Observe a legislação existente em sua região com relação à destinação de resíduos eletrônicos. Em caso de dúvidas entre em contato com a Full Gauge Controls.

FERMO DE GARANTIA - FULL GAUGE CONTROLS

Os produtos fabricados pela Full Gauge Controls, a partir de maio de 2005, têm prazo de garantia de 10 (dez) anos diretamente com a fábrica e de 01 (um) ano junto às revendas credenciadas, contados a partir da data da venda consignada que consta na nota fiscal. Após esse ano junto às revendas, a garantia continuará sendo executada se o instrumento for enviado diretamente à Full Gauge Controls. Os produtos estão garantidos em caso de falha de fabricação que os torne impróprios ou inadequados às aplicações para aos quais se destinam. A garantia se limita à manutenção dos instrumentos fabricados pela Full Gauge Controls, desconsiderando outros tipos de despesas, como indenização em virtude dos danos causados em outros equipamentos.

EXCEÇÕES À GARANTIA

A Garantia não cobre despesas de transporte e/ou seguro para o envio dos produtos com indícios de defeito ou mau funcionamento à Assistência Técnica. Não estão cobertos, também, os seguintes eventos: desgaste natural das peças, danos externos causados por quedas ou acondicionamento inadequado dos produtos

PERDA DA GARANTIA

O produto perderá a garantia, automaticamente, se

- Não forem observadas as instruções de utilização e montagem contidas no descritivo técnico e os procedimentos de instalação presentes na Norma NBR5410;
 For submetido a condições além dos limites especificados em seu descritivo técnico;
- · Sofrer violação ou for consertado por pessoa que não faça parte da equipe técnica da Full Gauge;
- Os danos ocorridos forem causados por queda, golpe e/ou impacto, infiltração de água, sobrecarga e/ou descarga atmosférica.

UTILIZAÇÃO DA GARANTIA
Para usufruir da garantia, o cliente deverá enviar o produto devidamente acondicionado, juntamente com a Nota Fiscal de compra correspondente, para a Full Gauge Controls. O frete de envio dos produtos é por conta do cliente. É necessário, também, remeter a maior quantidade possível de informações referentes ao defeito detectado, possibilitando, assim, agilizar a análise, os testes e a execução do serviço.

Esses processos e a eventual manutenção do produto somente serão realizados pela Assistência Técnica da Full Gauge Controls, na sede da Empresa - Rua Júlio de Castilhos, 250 - CEP 92120-030 - Canoas - Rio Grande do Sul - Brasil.

© Copyright 2013 • Full Gauge Controls ® • Todos os direitos reservados.