

Microsol II power

CONTROLADOR DIFERENCIAL DE TEMPERATURA PARA AQUECIMENTO SOLAR COM DOIS ESTÁGIOS DE APOIO

Ver.01

MCSOL2PWV01-02T-12079

1. DESCRIÇÃO

O Microsol II Power é um controlador diferencial de temperatura para automação de sistemas de aquecimento solar que torna simples o gerenciamento da temperatura da água nos reservatórios térmicos e piscinas, além de utilizar melhor a energia solar.

Atua no comando da bomba de circulação de água através do diferencial de temperatura entre os coletores solares e o reservatório térmico ou piscina. Dispõe também de duas saídas auxiliares para apoios, que podem ser elétrico, a gás, a diesel ou também para programar a filtragem da piscina.

O apoio 1 está vinculado a uma agenda que permite a configuração de até quatro eventos diários (para cada dia semana, independentemente) e o apoio 2 pode ser configurado, opcionalmente, para funcionamento em conjunto com a agenda.

Possui funções que impedem o congelamento e o superaquecimento da água nas tubulações e um relógio com bateria interna para garantir seu sincronismo, mesmo na falta de energia, por muitos anos. Os principais atrativos do Microsol II power são sua versátil fonte chaveada universal (90 a 264Vac) e os seus potentes relés (dois de 16A e um de 30A) que podem comandar diretamente (sem contatoras) motores de até 1HP e resistências elétricas de até 7.500W, o que proporciona ao usuário economia na instalação.

O instrumento possui comunicação serial para conexão com o software de gerenciamento SITRAD®, bem como com as interfaces Wall-Link® e Wall-Fi®.

2. APLICAÇÃO

· Sistemas de aquecimento solar bombeados

3. ESPECIFICAÇÕES TÉCNICAS

-Alimentação: 90~264Vac±10% (50/60Hz) - Também disponível em 12Vac/dc

- Temperatura de controle: Sensor 1:-50 a 200°C/-58 a 392°F Sensores 2 e 3: -50 a 105°C / -58 a 221°F

- Resolução: 0.1°C entre -10 e 100°C e 1°C no restante da faixa

1°F em toda a faixa

- **Dimensões:** 123 x 84 x 34mm - Temperatura de operação: $0 a 50 ^{\circ}\text{C} / 32 a 122 ^{\circ}\text{F}$

- Umidade de operação: 10 a 90% UR (sem condensação) - Sensores: S1 - Sensor dos coletores - Branco - Silicone

S2 - Sensor do Reservatório/Piscina - Cinza - PVC

S3 - Sensor de controle de apoios - Marrom - PVC

- Saídas de controle: PUMP - Bomba d'água ou solenóide - 16(8)A/250Vac 1HP

AUX1 - Saída de apoio 1 - 16(8)A/250Vac 1HP (4000W) AUX2 - Saída de apoio 2 - 30(15)A/250Vac 2HP (7500W)

4. CONFIGURAÇÕES AVANÇADAS

4.1 Para acessar e alterar os parâmetros de configuração

Os parâmetros de configuração podem ser acessados e alterados através do Wall-Fi, Wall-Link ou então, pelo computador através do software Sitrad.

4.2.1. Parâmetros de configuração

		CELSIUS				FAHRENHEIT			
Fun	Descrição	Mín	Máx	Unid	Padrão	Mín	Máx	Unid	Padrão
F01	Diferencial para ligar bomba de circulação de água	1.0	40.0	°C	8.0	2	72	°F	14
F02	Diferencial para desligar bomba de circulação de água	1.0	40.0	°C	4.0	2	72	°F	7
F03	Temperatura mínima em S1 para acionar a bomba	-50.0	200	°C	-50.0	-58	392	°F	-58
F04	Retardo de religamento da bomba	0	999	seg.	0	0	99	seg.	0
F05	Diferencial negativo (S1-S2) para ligar a bomba para								
	dissipar calor	-40.0	0.0	°C	0.0	-72	0	°F	0
F06	Temperatura mínima S2 para permitir que a dissipação de								
	calor seja ativada	0.0	105	°C	105	32	221	°F	221
F07	Anti-congelamento S1 para ligar a bomba	-18	10.0	°C	3.0	-1	50	°F	37
F08	Histerese do anti-congelamento	0.1	20.0	°C	1.0	1	36	°F	1
F09	Tempo mínimo de anti-congelamento	0	999	seg.	0	0	999	seg.	0
F10	Temperatura S1 de superaquecimento p/ deslig. a bomba	0.0	200	°C	90.0	32	392	°F	194
F11	Histerese de superaquecimento p/ religar a bomba (S1)	0.1	20.0	°C	1	1	36	°F	1
F12	Temperatura S2 de superaquecimento p/ deslig. a bomba	0.0	105	°C	105	32	221	°F	221
F13	Histerese de superaquecimento p/ religar a bomba (S2)	0.1	20.0	°C	1.0	1	36	°F	1
F14	Modo de operação do apoio 1	0	1	-	0	0	1	-	0
F15	Setpoint de temperatura do apoio 1	-50.0	105	°C	35.0	-58	221	°F	95
F16	Histerese de operação do apoio 1	0.1	20.0	°C	1.0	1	36	°F	1
F17	Mínimo ajuste do Setpoint de temperatura do apoio 1	-50.0	105	°C	-50.0	-58	221	°F	-58
F18	Máximo ajuste do Setpoint de temperatura do apoio 1	-50.0	105	°C	105	-58	221	°F	221
F19	Tempo de acionamento manual do apoio 1	0	999	min.	0	0	999	min.	0
F20	Modo de operação do apoio 2	0	5	-	0	0	5	-	0
F21	Setpoint de temperatura do apoio 2	-50.0	105	°C	30.0	-58	221	°F	86
F22	Histerese de operação do apoio 2	0.1	20	°C	1.0	1	36	°F	1
F23	Mínimo ajuste do Setpoint de temperatura do apoio 2	-50.0	105	°C	-50.0	-58	221	°F	-58
F24	Máximo ajuste do Setpoint de temperatura do apoio 2	-50.0	105	°C	105	-58	221	°F	221
F25	Tempo de acionamento manual do apoio 2	0	999	min.	0	0	999	min.	0
F26	Tempo ligado do timer cíclico	1	999	min.	1	1	999	min.	1
F27	Tempo desligado do timer cíclico	1	999	min.	1	1	999	min.	1
F28	Modo de atrelamento da agenda de eventos	0	3	-	0	0	3	-	0
F29	Alarme de temperatura mínima S1	-50.0	200	°C	-50.0	-58	392	°F	-58
F30	Alarme de temperatura máxima S1	-50.0	200	°C	200	-58	392	°F	392
F31	Offset de indicação da temperatura S1	-5.0	5.0	°C	0.0	-9	9	°F	0
F32	Offset de indicação da temperatura S2	-5.0	5.0	°C	0.0	-9	9	°F	0
F33	Offset de indicação da temperatura S3	-5.0	5.1	°C	0.0	-9	10	°F	0
F34	Endereço na rede RS-485	1	247	-	1	1	247	-	1

4.2.2. Descrição dos parâmetros

F01- Diferencial para ligar a bomba de circulação de água

Permite ajustar a temperatura diferencial (S1-S2) para acionamento da bomba de circulação de água. À medida que os coletores solares recebem energia, a temperatura no sensor S1 aumenta. Quando esta temperatura estiver a um valor determinável acima da temperatura do sensor S2, a bomba é ligada e circula para baixo a água aquecida, armazenando-a no reservatório, por exemplo.

F02 - Diferencial para desligar a bomba de circulação de água

Permite ajustar a temperatura diferencial (S1-S2) para desligamento da bomba de circulação de água. Com a bomba ligada, a água quente circula para baixo e a fria para cima. Logo, a diferença de temperatura entre S1 e S2 tende a diminuir. Quando esta diferença cai a um valor determinável, a bomba é desligada e cessa a circulação de água.

F03 - Temperatura mínima em S1 para acionar a bomba

Temperatura mínima no sensor 1 para permitir o acionamento da bomba de circulação de água. Para desativar esta função basta ajustar a mesma com o valor mínimo.

F04 - Retardo de religamento da bomba

Permite ajustar o tempo de desligamento mínimo que a bomba deve ter antes que possa ser religada. Com essa opção evita-se que a bomba fique sendo ligada e desligada em curtos espaços de tempo, desta maneira aumentando a vida útil da mesma. Esta função também define o retardo de acionamento da bomba ao ligar o controlador.

F05 - Diferencial negativo (S1-S2) para ligar a bomba para dissipar calor

Diferencial negativo (S1-S2) para acionamento da bomba de circulação de água. Esta função permite a dissipação de temperatura excessiva no reservatório de água, para desativar esta função basta ajustar a mesma com o valor máximo.

F06 - Temperatura mínima S2 para permitir que a dissipação de calor seja ativada

Temperatura mínima no sensor 2 para permitir que as funções de dissipação de calor possam ser acionadas

F07 - Anti-congelamento S1 para ligar a bomba

Permite ajustar a temperatura de formação de gelo nos coletores. Quando a temperatura nos coletores (sensor 1) estiver muito baixa (Ex.: noites de inverno), a bomba é ligada, de tempos em tempos, para impedir que a água congele nos canos e danifique os mesmos. Para desativar esta função basta ajustar a mesma com o valor mínimo.

F08 - Histerese do anti-congelamento

Histerese da função de anti-congelamento para desligar a bomba de circulação de água.

F09 - Tempo mínimo de anti-congelamento

Tempo mínimo que a função de anti-congelamento ficará acionada mesmo que a temperatura no sensor 1 volte ao seu valor normal.

F10 - Temperatura S1 de superaquecimento p/ desligar a bomba

Permite ajustar a temperatura de superaquecimento dos coletores para desligar a bomba de circulação de água. Quando a temperatura nos coletores (sensor 1) estiver acima de um valor determinável, a bomba é desligada para impedir que a água superaquecida circule pelos canos e os danifique (caso canos de PVC sejam usados).

F11 - Histerese de superaquecimento em S1 p/ religar a bomba

Ajuste da histerese da temperatura de superaquecimento do sensor 1 para permitir o religamento da bomba de água.

F12 - Temperatura S2 de superaquecimento p/ desligar a bomba (temperatura da piscina)

Permite ajustar a temperatura de superaquecimento da piscina para desligar a bomba de circulação de água, evitando desconforto térmico.

F13 - Histerese de superaquecimento p/ religar a bomba (S2)

Ajuste da histerese da temperatura de superaquecimento do sensor 2 para permitir o religamento da bomba de água.

F14 - Modo de operação do apoio 1

Permite configurar o modo de funcionamento da saída de apoio 1. Os modos são:

- O Apoio 1 funcionando independente do apoio 2
- 1 Apoio 1 desacionado guando o apoio 2 estiver acionado

F15 - Setpoint de temperatura do apoio 1

Permite ajustar a temperatura de operação do apoio 1.

F16 - Histerese de operação do apoio 1

Ajuste da histerese do setpoint de temperatura de acionamento do apoio 1.

F17 - Mínimo ajuste do Setpoint de temperatura do apoio 1

Limite inferior cuja finalidade é evitar que, por engano, regule-se temperaturas exageradamente baixas de setpoint do apoio 1.

F18 - Máximo ajuste do Setpoint de temperatura do apojo 1

Limite superior cuja finalidade é evitar que, por engano, regule-se temperaturas exageradamente altas de setpoint do apoio 1.

F19 - Tempo de acionamento manual do apoio 1

Tempo em que o apoio 1 ficará acionado quando for ativado manualmente. Após transcorrido este período o apoio 1 volta a funcionar automaticamente

F20 - Modo de operação do apoio 2

Permite configurar o modo de funcionamento da saída de apoio 2. Os modos são:

- **0** Termostato para refrigeração
- 1 Termostato para aquecimento
- 2 Termostato para refrigeração atrelado à agenda de eventos
- 3 Termostato para aquecimento atrelado à agenda de eventos
- 4 Timer cíclico com estado inicial desligado
- 5 Timer cíclico com estado inicial desligado atrelado à agenda de eventos
- 6 Termostato de refrigeração para dissipação de temperatura excessiva no reservatório de

F21 - Setpoint de temperatura do apoio 2

Permite ajustar a temperatura de operação do apojo 2.

F22 - Histerese de operação do apoio 2

Ajuste da histerese do setpoint de temperatura de acionamento do apoio 2

F23 - Mínimo ajuste do Setpoint de temperatura do apoio 2

Limite inferior cuja finalidade é evitar que, por engano, regule-se temperaturas exageradamente baixas de setpoint do apoio 2.

F24 - Máximo ajuste do Setpoint de temperatura do apoio 2

Limite superior cuja finalidade é evitar que, por engano, regule-se temperaturas exageradamente altas de setpoint do apoio 2.

F25 - Tempo de acionamento manual do apoio 2

Tempo em que o apoio 2 ficará acionado quando for ativado manualmente. Após transcorrido este período o apoio 2 volta a funcionar automaticamente.

F26 - Tempo ligado do timer cíclico

Permite ajustar o tempo em que o timer cíclico mantém sua saída ligada.

F27 - Tempo desligado do timer cíclico

Permite ajustar o tempo em que o timer cíclico mantém sua saída desligada.

F28 - Modo de atrelamento da agenda de eventos Permite ajustar a quais dos 4 eventos diários cada saída de apoio será atrelada. Os modos possíveis

são: 0 - AUX 1 atrelado aos eventos 1,2,3,4 2 - AUX 1 atrelado aos eventos 1,2

- AUX 2 atrelado aos eventos 1,2,3,4
- AUX 1 atrelado ao evento 1 AUX 2 atrelado aos eventos 2,3,4
- AUX 2 atrelado aos eventos 3,4
- 3 AUX 1 atrelado aos eventos 1,2,3 AUX2 atrelado ao evento 4

F29 - Alarme de temperatura mínima S1

Temperatura para indicação de alarme de temperatura baixa no sensor 1

F30 - Alarme de temperatura máxima S1

Temperatura para indicação de alarme de temperatura alta no sensor 1

F31 - Offset de indicação da temperatura S1

Esta função permite ajustar o Offset de indicação da temperatura do sensor 1(coletores).

F32 - Offset de indicação da temperatura S2

Esta função permite ajustar o Offset de indicação da temperatura do sensor 2 (reservatórios/piscina).

F33 - Offset de indicação da temperatura S3

Esta função permite ajustar o Offset de indicação da temperatura do sensor 3 (apoios).

Para desabilitar o sensor de temperatura dos apoios (sensor 3) basta configurar esta função com seu

Caso o acionamento da bomba d'água esteja atrelado ao sensor 3, e este tenha sido desativado, o controlador automaticamente irá desativar o atrelamento.

F34 - Endereço na rede RS-485

Endereço do instrumento na rede para comunicação com o software SITRAD®, Wall-Link e Wall-Fi. Obs: em uma mesma rede não pode haver mais de um instrumento com o mesmo endereço.

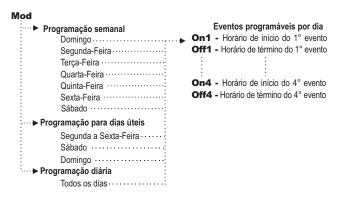
4.3. Modo de operação da agenda de eventos

Nesta opção pode-se escolher a maneira com que a agenda de eventos irá operar.

- Programação semanal Neste modo o instrumento pode configurar até 4 eventos diferentes em cada dia da semana
- Programação para dias úteis Neste modo o instrumento mantém os eventos iguais nos dias úteis (Segunda a Sexta) e permite programar eventos diferentes para o Sábado e o Domingo.
- Programação diária Neste modo o instrumento mantém os eventos iguais para todos os dias da semana.

4.4. Programação da agenda de eventos

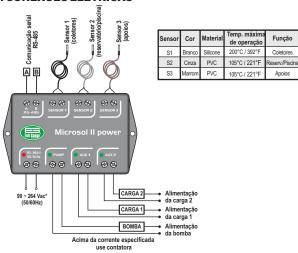
Nesta opção pode-se entrar com os horários de cada evento. A entrada dos dados depende do modo de operação configurado. Pode-se configurar até 4 eventos para cada dia. Para cada evento configura-se o horário inicial e o horário final através das opções On1...Off1 até On4...Off4, onde:


On1 - Horário de início do 1° evento

Off1 - Horário de término do 1° evento

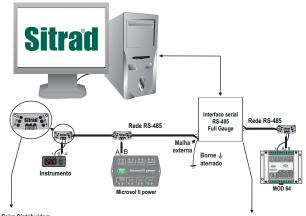
On4 - Horário de início do 4° evento

Off4 - Horário de término do 4° evento


Caso não seja necessário utilizar-se dos 4 eventos pode-se configurar os mesmos no estado desabilitado, para isto basta incrementar o horário de desligamento (Off1 por exemplo) com o valor máximo. Também é possível configurar um evento que comece em um dia e termine no outro, para isto deve-se incrementar o horário de desligamento até aparecer a opção Cro e ajustar no dia seguinte um evento com horário de início às 00h e 00min. De acordo com o modo de operação configurado podem ser apresentadas as seguintes possibilidades de programação.

5. SINALIZAÇÕES

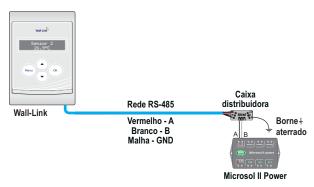
LED vermelho piscando lentamente - Controlador desprogramado LED vermelho piscando rapidamente - Sensor de temperatura desconectado


6. CONEXÕES ELÉTRICAS

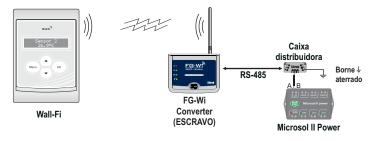
^{*} Também disponível em 12Vac/dc

Nota: O comprimento do cabo do sensor pode ser aumentado pelo próprio usuário, em até 200 metros, utilizando cabo 2 x 24 AWG.

7. INTERLIGANDO MICROSOL II POWER, INTERFACE SERIAL RS-485 E COMPUTADOR



Caixa Distribuidora


Edulizada para interligar mais de um instrumento à Interface. As ligações dos fios devem ser feitas conforme segue: Terminal A do instrumento conecta-se ao terminal A da caixa distribuidora, que por sua vez, deve ser conectado com o terminal A da Interface. Repita o procedimento para os terminais B e $\frac{1}{2}$, sendo $\frac{1}{2}$ a malha do cabo (terra opcional). O terminal $\frac{1}{2}$ da caixa distribuidora deve ser conectado aos respectivos terminais $\frac{1}{2}$ de

Interface Serial RS-485 Dispositivo utilizado para estabelece a conexão dos instrumentos da Full Gauge Controls com o Sitrad[®].

8. INTERLIGANDO MICROSOL II POWER E INTERFACE REMOTA WALL-LINK

9. INTERLIGANDO MICROSOL II POWER, FG-WI CONVERTER E INTERFACE REMOTA WIRELESS WALL-FI

Imagens meramente ilustrativas

IMPORTANTE

Conforme capítulos da norma NBR 5410:

- 1: Instale <u>protetores contra sobretensões</u> na alimentação.
- 2: Cabos de sensores e de sinais de computador podém estar juntos, porém não no mesmo eletroduto por onde passam alimentação elétrica e acionamento de cargas.
- 3: Instale supressores de transientes (filtros RC) em paralelo às cargas, como forma de aumentar a vida útil dos relés.

Esquema de ligação de supressores em cargas acionamento direto Esquema de ligação de supressores em cargas acionamento direto Para acionamento direto leve em consideração a corrente máxima especificada.

© Copyright 2006 • Full Gauge Controls ® • Todos os direitos reservados.